
Over the last few years several scholars have devoted increasing attention
to the changing roles of contrived experiments in the seventeenth century,
an age when they gained a significant if problematic role as a component
of our knowledge about nature. Special attention has been devoted to the
transition from generalized everyday experiences, at times associated with
an Aristotelian or peripatetic tradition, to the contrived experiments per-
formed at special places and times by the new natural philosophers.
Historians have studied how experiments pertinent to several disciplines
were conceived, performed, privately recorded, witnessed, and reported in
print.2

There is no question that for some scholars, such as the French Minim
Marin Mersenne, the nobleman Robert Boyle, or the Paris academician
Edme Mariotte, for example, experiments were the key source of knowl-
edge about nature and they made no secret of it. Other scholars in the
mathematical disciplines, however, did not wish to rely on contrived exper-
iments at all in the formal presentation of their sciences. Rather, they
sought either principles to which the mind naturally consents, such as sym-
metry, or principles based on generalized experiences describing the nor-
mal course of nature. Mental operations or thought experiments would be
more appropriate terms to describe how they proceeded. 

This search for new principles is a significant feature of seventeenth-
century investigations and formulations of the mathematical disciplines
that has attracted less attention than experiments. One root of this
approach can be found in classical Greece and especially in Archimedes,
who was among the first to try to formulate a science dealing with
nature—mechanics or the science of the balance—in a mathematical fash-
ion resembling Euclid’s Elements.3 My essay focuses on mechanics both
because this was Archimedes’s subject in On the Equilibrium of Planes, and
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also because mechanics provides ample material to reflect on the way math-
ematicians like Galileo and Christiaan Huygens maneuvered in the transi-
tion from the science of equilibrium to the new science of motion.

Recently Michael Mahoney has identified the engineering tradition as
a source of rules or principles in mechanics, namely:

1. You cannot build a perpetual-motion machine.
2. You cannot get more out of a machine than you put into it.
3. What holds an object at rest is just about enough to get it moving.
4. Things, whether solid or liquid, do not go up by themselves.
5. When you press on water or some other liquid, it pushes out equally

in all directions.

According to Mahoney, starting in the 1580s with the Dutch mathemati-
cian and engineer Simon Stevin and with Galileo, engineers aspiring to
become natural philosophers began transforming such maxims into formal
mathematical principles of mechanics.4

In this essay I explore this Archimedean tradition and the attempts to
reformulate classical mathematical disciplines, notably the doctrine of the
equilibrium of the balance, or formulate new ones, such as the science of
motion or of the collision of bodies, relying on generalized experience and
principles to which the mind consents, rather than contrived experiments.
While Mahoney is certainly right in identifying a significant source in the
engineering tradition, mathematicians appealed also to abstract principles,
such as symmetry, and progressively reformulated and expanded all princi-
ples regardless of their provenance in ways bearing only at best a vague
relation to engineering.5 Moreover, often mathematicians were only too
keen to suppress their engineering background to address a more philo-
sophical audience; therefore, engineering connections were more likely to
be suppressed than emphasized. Several mathematicians adopted various
axioms and postulates in their works on mechanics and motion. Since it
would be impossible to provide an exhaustive account, I will discuss only
a few of the protagonists of this approach besides Stevin and Galileo,
namely the latter’s successor and follower, Evangelista Torricelli, who for-
mulated a new principle of the science of motion, and Huygens, who pro-
vided an axiomatic formulation of the science of collision among bodies. It
is Galileo, however, that is going to attract most of the attention and whose
project and concerns I examine in greater detail.

Starting from Descartes and his laws of motion, several philosophers
and mathematicians, such as Leibniz, appealed to God, and to broader the-
ological and philosophical reasons, in order to establish the foundations of
several sciences, especially with regard to conservation principles. At times,
the boundaries between theologically and not-theologically based princi-
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ples were quite blurred, with principles introduced on theological grounds
being later posed on non-theological ones. Descartes, for example, justi-
fied his laws of motion having recourse to God’s immutability, but
Huygens used the first two laws, claiming that bodies left to themselves
tend to move with a rectilinear uniform motion, dropping God out of the
picture. Those theological and philosophical considerations add factors
about God and his relations to the world going beyond the scope of my
contribution.6

It goes without saying that specific rhetorical techniques of mention-
ing witnesses of contrived experiments, such as those mentioned by Simon
Schaffer, Steven Shapin or Peter Dear, do not apply here. But one may still
wonder what counted to late 16th- and 17th century mathematicians as
an acceptable axiom or principle, how they were presented in print and
justified, and how the perception of what was acceptable changed with
time.7

1. Archimedes and Axiomatic Foundations

A key exemplar from Antiquity is Archimedes’s work in mechanics, espe-
cially his treatise On the equilibrium of planes, which established the doc-
trine of the balance and determined centers of gravity of different
geometrical figures. His other work on mechanics, On floating bodies, has
a more problematic axiomatic structure, so much so that the meaning of
its only postulate is unclear.8 As we are going to see below, in his 1612
work on bodies in water Galileo tried to provide foundations for hydro-
statics based on the balance, thus underscoring its primacy over other areas
of mechanics.

In On the equilibrium of planes Archimedes relied on an axiomatic style
derived from mathematics in a work about nature, starting from seven pos-
tulates. The first two, reproduced below, give us a sense of his enterprise:9

1. We postulate that equal weights at equal distances are in equilib-
rium, and that equal weights at unequal distances are not in equi-
librium, but incline towards the weight which is at the greater
distance.

2. If, when weights at certain distances are in equilibrium, something
be added to one of the weights, they are not in equilibrium, but
incline towards that weight to which something has been added.

Archimedes did not take as a postulate the statement that “magnitudes are
in equilibrium at distances reciprocally proportional to their weights,” but
rather he tried to prove it as a theorem. That statement lacked the required
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criteria to be naturally accepted by our mind. If some generalized experi-
ences may have guided him in his choice of some postulates, others must
have appeared less suitable and contrived experiments were certainly not a
basis on which to proceed; even such relatively common experiences as
those provided by a statera, or balance with unequal arms, did not look
sufficient to him. I am unsure whether we have reflected with sufficient
care on which statements could be chosen as postulates at different loca-
tions and times. I often paused when reading Peter Dear’s claim: “Recent
research has shown that Galileo aimed at developing scientific knowledge,
whether of moving bodies or of the motion of the earth, according to the
Aristotelian (or Archimedean) deductive formal structure of the mixed
mathematical sciences” (Dear 1995, 125–26). My sense is that Archimedes
would have required stricter criteria for what can be accepted as a postu-
late and would have used common experience more sparingly than
Aristotle. But this is a claim needing a more extensive elaboration than can
be given here.

The actual proof of equilibrium provided by Archimedes when the dis-
tances are inversely as the weights was seen as problematic or at least
improvable by several commentators, such as Galileo, and has attracted
attention to the present day.10 In propositions 6 and 7 of On the equilib-
rium of planes, Archimedes tried to provide somewhat cumbersome proofs
of the equilibrium of balances with unequal arms and unequal weights in
two cases, first with commensurable and then with incommensurable mag-
nitudes. Nonetheless, Archimedes’s work constituted an example of how
to formulate a mathematical science dealing with nature that was especially
influential in the late sixteenth and seventeenth centuries.

2. Stevin and Galileo: From the Balance 
to Falling Bodies

Much as Archimedes in his study of the equilibrium of the balance, Stevin
and Galileo did not wish to rely on contrived experiments in their formal
presentation of the science of mechanics, hydrostatics, the science of the
resistance of materials, and the science of motion. Stevin provided
axiomatic formulations of his theory. In addition, both in his celebrated
study of the inclined plane and of the equilibrium of water in a container,
he relied on a principle such as the denial of perpetual motion (see
Illustration 1).11

Galileo gave the balance pride of place in his work on mechanics. The
balance was both the device that had been treated and formalized by
Archimedes, and the basis for understanding other machines and prob-
lems, such as the other simple machines, the siphon, and the loaded beam.
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In some cases, such as the science of resistance of materials, Galileo believed
he could extend the doctrine of the balance to new domains by seeking to
show visually how a beam could be conceptualized as a balance (see
Illustration 2). Similarly, in the case of the siphon he tried to provide foun-
dations based on a balance with unequal arms by relying on the analogy
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ILLUSTRATION 1: Stevin and the Inclined Plane. 
According to Stevin the chain of spheres on the inclined plane will not move on its
own accord, lest we have perpetual motion. The lower part SON . . . GV can be
removed with symmetry consideration. The remaining portion STV shows that the
weights are in equilibrium when they are proportional to the lengths of the
inclined planes.

ILLUSTRATION 2: Galileo’s beam.
Galileo argued that a loaded beam could be seen as a balance or lever. One arm is
CB, the fulcrum is B, and the other arm is AB, namely the cross section of the beam
attached to the wall. The “weights” in this case would be represented by the resis-
tance offered by the beam’s fibers.
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between the speed of the two weights and of water in the two branches of
the siphon (see Illustration 3).12

ILLUSTRATION 3: Galileo’s siphon.
Here Galileo argued that if water in the larger arm is pressed down from GH to
QO, water in the smaller arm will rise from L to AB. The speed of water in the two
arms is proportional to GQ and LA and is inversely as the cross sections. Therefore
the siphon works like a balance where the weights are as the water surfaces in the
two arms and the speeds are as the distances from the fulcrum. 

Although Galileo’s reformulation of the doctrine of the balance does not
tell us much that is new about the contents of mechanics, in my interpre-
tation it is the key to understanding his formal axiomatic presentation strat-
egy in other areas, especially the science of motion. Here I am going to
outline his reformulation and its implications.

Both in his Padua lecture notes, Le mecaniche, and later in the Discorsi,
Galileo presented a new proof of the key condition for the equilibrium of
a balance, namely, that the weights are inversely as the distances of their
suspension points from the fulcrum. Nobody doubted the truth of the
proposition; the trouble was how to prove it starting from indubitable
assumptions. If Galileo had sought to ground his science on experience,
the claim that the balance is in equilibrium if the weights are inversely as
the distances of their suspension points from the fulcrum would have
looked like a perfect candidate. Such balances had been commonly used for
centuries on every market square and nobody doubted the principle on
which they operated. However, Galileo wished to prove that principle by
means of a series of operations that he thought would be accepted as legit-
imate by the mind or our intuition (see Illustration 4). Much as for
Archimedes, the starting point was a variant of the perfectly symmetrical
case of equal weights hanging from equal distances. 

Galileo attempted to simplify Archimedes’s proofs, but followed a
rather similar approach. The main idea consists in attaching a homoge-
neous bar, such as a cylinder or a prism, parallel to a horizontal balance;
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then by a series of operations that do not appear to our mind to alter the
equilibrium conditions, like cutting the prism at some point and sus-
pending it in a different fashion, one is left with a configuration whereby
the weights are inversely to their respective distances from the center.
Much as in Archimedes, intuition and reason are invoked rather than
actual experiments.13

ILLUSTRATION 4: Picture of Galileo’s balance. 
The prism AB is attached at A and B to the balance with fulcrum C. Cutting the
prism in D and attaching the two parts to the balance in E leaves the equilibrium
conditions unchanged. Next Galileo suspends the two parts from their middle
points L at G and M at F, again without altering the equilibrium conditions. The
distances CG and CF are found with some calculations to be inversely as the
weights of AD and DB of the two portions of the prism.

From the perspective adopted here, a distinction between private
manuscripts and publication in Galileo is insufficient. Within Galileo’s
published works we have to distinguish between informal and formal pre-
sentation. I have no doubt that privately Galileo performed important
experiments either heuristically or to confirm results he had found by cal-
culation.14 In print Galileo referred to experiments in the Dialogo, for
example, but in the second and third days of the Discorsi his main con-
cern was with establishing an axiomatic science of motion on the example
of Archimedes. 

In De motu antiquiora Galileo tried to establish foundations for the
science of motion from the balance, but he soon realized that he needed
a different starting point and therefore attempted to find suitable founda-
tions elsewhere. Galileo performed several heuristic experiments privately,
and discussed some of them in print in a variety of texts, but my main con-
cern here is with the formal axiomatic presentation of his sciences.
Whereas Galileo’s experimental forays have been frequently commented
upon, his foundational efforts have attracted less attention, yet they con-
stitute a major episode in the history of science. Galileo’s letters to Paolo
Sarpi in 1604 and Luca Valerio in 1609 show him desperately seeking
principles to which the mind naturally consents, in order to construct an
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axiomatic science based on definitions and propositions. It is somewhat
ironic to notice how hard Galileo was struggling to find axioms that looked
natural. Indeed, this is often a feature of axioms, to be contrived in the
extreme in order to look perfectly natural and straightforward, much like
some experiments. Both in Le mecaniche and in a letter to Sarpi, Galileo
used the word “undoubted” or “indubitable” to qualify an axiom or pos-
tulate. In Le mecaniche he stated: “We can take as an undoubted axiom this
conclusion: heavy bodies, once we have removed all external and adventi-
tious impediments, can be moved on the plane of the horizon by a what-
soever smallest force.” Similarly in the letter to Sarpi he stated that
thinking over the problem of motion, he realized he lacked a “totally indu-
bitable principle to be put as an axiom.” His “indubitable” principle turned
out to be the erroneous proportionality between speeds and distances, but
this does not affect my point.15 The rhetorical strategy and language used
to present postulates requires the same amount of care and scrutiny we
have devoted to experimental narratives. 

Galileo did not succeed fully in providing definitions and axioms in a
form that would appear as an intuitive and convincing account of how
nature operates. Rather, he defined naturally accelerated motion as that
motion where the speed increases proportionally to the time, adding a
postulate stating: “The degrees of speed acquired by the same moveable
over different inclinations of planes are equal whenever the heights of
those planes are equal.”16 There is no question that, despite his pretences
to the contrary, Galileo’s formulation was highly artificial and contrived.
Even a cursory survey of the manuscript evidence and correspondence
shows that he struggled for decades to present his construction in a “nat-
ural” fashion.

On the basis of his definition and postulate Galileo built a mathemati-
cal theory that in principle may have remained just that, a mathematical
theory devoid of any physical significance. It is curious that despite this
pretence, Galileo spent some time trying to defend his axiom by claiming
both that it is naturally accepted by the mind, or the “lume naturale”
(“good sense” is Drake’s translation),17 and that an experiment or “espe-
rienza” confirms it; pendulums, for example, reach the same height from
which they have been released. Galileo is aware that a fall along a rectilin-
ear inclined plane is different from a fall along a circle arc as in an oscillat-
ing pendulum. In spite of this and other difficulties, Galileo argues that
“l’intelletto resti capace,” or “the mind understands” (following Drake)
that the bob returns to the same height. “Hence let us take this for the pre-
sent as a postulate, of which the absolute truth will be later established for
us by our seeing that other conclusions, built on this hypothesis, do indeed
correspond with and exactly conform to experience.”18 This provisional
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acceptance of a postulate that is later corroborated by the conclusions
underscores the lack of certainty of the postulate and highlights the weak-
ness of Galileo’s foundations.

From the definition Galileo proved that the spaces traversed by a body
falling with a naturally accelerated motion are proportional to the square
of the times. This statement is shown to be equivalent to the odd-number
rule, whereby the spaces traversed in successive time intervals are as 1, 3,
5, 7, etc. At this point he introduced the celebrated experiment with the
inclined plane showing with a great degree of accuracy that real bodies
actually follow this rule. The experiment involves an inclined plane about
twelve braccia long, arranged so as to have a rather small inclination, raised
on one side only one or two braccia. Galileo measured time with a water
clock. This contrived experiment is presented as having no foundational
role at all. Its role is to show that the mathematical construction he has
provided actually describes the behavior of real bodies in the world.
Galileo’s mathematical theory would remain valid even if nature behaved
differently.

Galileo perceived the reference to experiments justifying his axioms as
a weakness and after publication he continued to reflect on the matter.
Eventually, stimulated by his pupil Vincenzo Viviani, he produced a proof
of his axiom that was first published in the posthumous second edition of
the Discorsi in 1656.19

Galileo’s works were read in strikingly different fashion. Among his dis-
ciples, Torricelli was probably the one who was most concerned with the
problem of axiomatic foundations. In the 1644 De motu he put forward
the postulate or principle whereby two combined bodies do not move
unless their common center of gravity descends. There is no question that
he presented his postulate as a proposition accepted by the mind based on
common intuition and general observations. His rather general examples
were not contrived experiments, but rather instances of a general state-
ment, such as systems of weights on inclined planes and connected via a
pulley, for example. In his reformulation Torricelli was quite successful,
since his postulate was both powerful and convincing.

Mersenne, by contrast, had no interest at all in axiomatization and fre-
quently focused instead on the empirical adequacy of Galileo’s claims, as
with the distance covered by a body in free fall in a given time or with
spheres rolling down inclined planes. In both instances he worried about
numerical results from specific propositions rather than logical deductive
structures.20

Next we are going to examine a previous attempt at justifying the law
of fall that was later discarded by Galileo. In the debates on falling bodies
in the 1640s several scholars were to adopt a similar approach. 
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3. Falling Bodies and Unit Invariance

An instructive case occurred with the debates on the rule followed by
heavy bodies in free fall. In a letter to Benedetto Castelli, Gianbattista
Baliani reported that Galileo had defended the odd-number rule by argu-
ing that it was the only one invariant on the choice of the distance.21 The
statement is somewhat cryptic, but I believe it can be interpreted as fol-
lows. Units of distance are arbitrary; indeed in Galileo’s Italy they varied
almost from town to town. Galileo seemed to argue that if nature follows
a rule according to which heavy bodies fall, that rule should not depend on
arbitrary factors as the units used at Florence or Rome, or indeed any units
at all, but must be independent of them. Units are local and conventional,
whereas nature’s operations should be universal and independent of
human conventions. Following the odd-number rule, if a body were to fall
a given distance in an arbitrary time, in the second time interval, equal to
the first, the body would fall three times that distance, five in the third, and
so on. This proposition remains true for any choice of the initial distance
fallen. For example, if one were to choose an initial distance four times
greater as the initial unit, the correspondent time would be doubled. In the
second time interval, equal to the first, the body would again fall three
times the initial distance, since 5+7 (=12) is three times 1+3 (=4); the same
would happen in successive intervals, since 9+11 (=20) is five times 1+3
(=4). Several other rules lack this invariance property. For example, if a
body fell in successive equal time intervals by distances as the natural num-
bers, 1, 2, 3, 4, etc., then if one were to chose a different unit of distance,
the proportion based on the natural numbers-rule would not be preserved.
Galileo’s choice is not unique, but the problem of determining which rules
are invariant under transformation of units is beyond the scope of this
paper.

It is not clear what the origin of this invariance rule is, but it is tempt-
ing to identify the engineering tradition as a possible source. Bridges or
towers stand or fall regardless of whether they are measured in Roman or
Florentine units and one can see why a similar reason could be applied to
falling bodies. Galileo in the end did not make much of this argument
because he deemed it only probable, but a closely related one was used by
several scholars of the following generation. Unlike Galileo, who accord-
ing to Baliani relied on space, those other scholars took time as the inde-
pendent variable. Despite this change, their reasoning resembled Galileo’s
in a major respect, because their condition reads like a constraint imposed
by our mind on the proportion between space and time of fall. Once again,
it is not a contrived experiment that serves as a foundation for the mathe-
matical theory, but rather a condition imposed by our mind on the possi-
ble or reasonable form experimental results can take. This strategy shows
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some similarity to imposing a symmetry principle, but it also appears some-
what less direct and more sophisticated in that it relies on the notion of
unit measure.

The seventeenth-century scholars who adopted this form of reasoning
were mathematicians Torricelli, Huygens, and Jacques Le Tenneur, as well
as the physician Theodore Deschamps. In his correspondence with
Mersenne in the late 1640s, for example, Huygens ridiculed alternative
rules based on the sequence of natural numbers 1, 2, 3, 4, etc. or on a geo-
metric relation, 1, 2, 4, 8, etc., arguing that they violated the invariance of
unit measures. Such alternative rules had actually been proposed by the
Bishop Jean Caramuel, the Jesuits Honoré Fabri and Pierre Le Cazre, and
the Genua nobleman Gianbattista Baliani.22 While empirically it may have
been difficult to refute those rules, the request that they satisfy unit invari-
ance ruled them out in the eyes of the scholars mentioned above.

Later in the century, interest in this problem shifted from invariance to
physical causes and Galileo’s odd-number rule was considered as a viable
approximation. Probably this is the reason why such debates attracted no
further attention.

4. Huygens and Impact

In the Latin and French editions of Principia philosophiae of 1644 and
1647, Descartes put forward seven rules of impact for hard bodies. The
rules relied on the third law of motion, stating the conservation of quan-
tity of motion, or magnitude of a body times its speed, with no regard to
direction. Descartes presented his laws of motion with the help of theo-
logical considerations about God’s immutability, whereas he claimed that
the seven impact rules were self-evident. He did not follow the
Archimedean axiomatic approach and did not produce a deductive struc-
ture; rather, he argued that his book should be read as a novel. Overall,
Descartes favored heuristic approaches and disliked axiomatic presenta-
tions, so much so that even his Géométrie contains no axioms. Yet it is per-
fectly possible to seek alternative formulations both of his mathematics and
rules of collision.23

Huygens was one of the first readers to realize that Descartes’s rules
were problematic and to tackle the issue in a new fashion. The problem
looked in some respects similar to the equilibrium of the balance with
equal arms and equal weights, in that one could start from the symmetri-
cal case of equal bodies colliding with equal and opposite speeds. Much
like the case of the balance, symmetry considerations require that the two
bodies behave in the same way after the impact, but this condition is insuf-
ficient to deal with more general cases. The outcome of his efforts was the
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treatise De motu corporum ex percussione, which remained unpublished in
his lifetime and saw the light only posthumously in 1703. It consists of five
hypotheses and thirteen propositions. It was not entirely uncommon to
find the term “hypothesis” meaning “presupposition” or “postulate,” as
done by Huygens here.

The first hypothesis states:24 “Any body once moved continues to
move, if nothing prevents it, at the same constant speed and along a
straight line.” This statement corresponds to Descartes’s first two laws of
nature, but it is devoid of the theological justifications one finds in
Descartes. In fact, Huygens provided no justification, suggesting that the
matter appeared unproblematic in his eyes. The second hypothesis poses a
restriction on the type of bodies investigated, namely hard bodies. For this
special case Huygens’s hypothesis claimed that when two equal bodies col-
lide with equal speeds, they rebound with the same speeds reversed.

It is the third hypothesis that is of special interest here, because
Huygens had recourse to the principle of relativity of motion. Galileo had
discussed a similar principle in the Dialogo, defending it with a series of
observations on the behavior of bodies on a moving ship, but he was far
from being the first to do so. In the opening of day four of the Discorsi
Galileo relied again on relativity of motion in order to argue that hori-
zontal projection does not affect the uniformly accelerated motion of
falling bodies. Huygens formulated relativity of motion as a hypothesis or
postulate and applied it in a quantitative fashion. In this way he was able
to move from a perfectly symmetric case to one where one body at rest is
hit by a supervening equal body. With the example of unit invariance for
falling bodies fresh in our mind, we notice here a similar approach
whereby an invariance condition enables the formulation of propositions
about nature. The case of unit measures, however, was entirely devoid of
empirical presuppositions: nobody performed experiments in Florence
and Rome to test whether the different units of length employed there
had any impact on the outcome. Empirical considerations, however, prob-
ably entered the principle of relativity of motion in a mediated way.
Huygens did not feel the need to justify it empirically, however, as if
human intuition by the mid-seventeenth century authorized his move.
His account of impacts on a moving barge reads not like a description of
an empirical test, but more like the mental operations on weights
described by Archimedes and Galileo in their discussions of the equilib-
rium of the balance:25

The motion of bodies and their equal and unequal speeds are to be
understood respectively, in relation to other bodies which are consid-
ered as at rest, even though perhaps both the former and the latter are
involved in another common motion. And accordingly, when two bod-
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ies collide with one another, even if both together are further subject
to another uniform motion, they will move each other with respect to
a body that is carried by the same common motion no differently than
if this motion extraneous to all were absent.

This abstract statement is instantiated in a more intuitive fashion with the
example of the moving barge. Huygens seems to have recourse to a mix-
ture between intuition and experiences that would have been common
enough to readers familiar with travels on boat along canals, a common
means of transport in the Netherlands and elsewhere:26

Thus, if someone conveyed on a boat that is moving with a uniform
motion were to cause equal balls to strike one another at equal speeds
with respect to himself and the parts of the boat, we say that both
should rebound also at equal speeds with respect to the same passen-
ger, just as would clearly happen if he were to cause the same balls to
collide at equal speeds in a boat at rest or while standing on the
ground.

The list of hypotheses does not cover all Huygens’s assumptions and
axioms. Buried in the text of Proposition 8 there is a statement of one of
his favorite axioms. The proposition states that in the collision between
two bodies with speeds inversely as their magnitudes, the bodies will
rebound with the same speeds with which they approached each other.
In the proof Huygens converted horizontal to vertical motion, a rather
straightforward move if one considers the collision between pendulum
bobs. In this context Huygens affirmed:27 “in mechanics it is a most cer-
tain axiom that the common center of gravity of bodies cannot be raised
by a motion that arises from their weight.” This axiom derives 
in all probability from a combination of Torricelli’s principle and the
denial of perpetual motion and, much like its ancestors, is not justified
by having recourse to experiments. Huygens probably assumed that his
readers would grant it based on common intuition and a wide range of
experiences.

In 1673 Edme Mariotte, Huygens’s colleague at the Paris Académie,
published a treatise on the collision of bodies where he put forward a
theory closely resembling Huygens’s. Unlike the Dutch scholar, how-
ever, Mariotte chose as the foundation for his theory what he called
“principles of experience,” namely propositions based on collision exper-
iments. Whereas Huygens had struggled to build his science almost a pri-
ori in Archimedean fashion, Mariotte’s treatise is a collection of
statements of what happens when bodies with a given magnitude and
speed collide.28
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5. A Newtonian Coda

The case of Isaac Newton is considerably complex and I am therefore
going to discuss here briefly only his three axioms or laws of motion in
Principia mathematica. It is significant that Newton qualified the three
laws as “axiomata sive leges”: they indeed do serve as axioms to his system.
His first law, the law of inertia, subsumes Descartes’s first two laws of
motion.29 The second law states that the change in the quantity of motion
is proportional to the force impressed, whether applied continuously or in
impulses. Historians have extensively discussed this law, despite the fact
that neither Newton nor his contemporaries made much of it.30

The third law states that the mutual actions of two bodies are always
equal and in opposite directions. A corollary to this law states the conser-
vation of quantity of motion in one direction, a result previously estab-
lished by Huygens. Huygens and Newton presented their equivalent
propositions in different ways. In the brief essay on collision published in
1669 in the Journal des Sçavans, Huygens gave general rules that could be
seen either as presuppositions or results of his investigations. The fourth
rule echoes proposition VI of De motu corporum ex percussione, stating that
quantity of motion (in the Cartesian sense) of two bodies can be dimin-
ished or augmented as a result of collision. In rule 5 in the 1669 essay,
however, he added that quantity of motion in the same direction is con-
served.31 Newton felt the need to justify his third law in various ways, first
by providing examples, then in the scholium by discussing thought exper-
iments, and even reporting the outcome of real experiments, including
numerical data.32 In the scholium he considered both collisions among
bodies and attractions. For collisions he sought to test the law by means of
pendulum experiments showing that quantity of motion, taking direction
into account, is not changed by the impact among bodies, whether hard or
soft (see Illustration 5). He concluded the experimental report with the
words:33 “In this manner the third law of motion—insofar as it relates to
impacts and reflections—is proved by this theory [of impact], which plainly
agrees with experiments.”

In the case of attractions, Newton could not experiment with gravity;
therefore he justified the third law first by means of an experiment with
magnetic bodies placed on floating supports in a bowl of water, showing
that action equals reaction because the bodies stay still where they come
together, rather than moving in one direction. This case highlights his
eagerness to rely on experiments if at all possible. In the case of gravity he
had recourse to a thought experiment consisting in cutting the earth in
two unequal parts and showing that they do not move as a result of their
mutual attractions.34 In general, despite the case of linear momentum,
Newton did not rely on conservation principles and did not make much of
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them in his system. For example, he still believed that Cartesian quantity
of motion (without taking direction into consideration) was a significant
measure of motion in the universe and rejected the conservation of living
force (mass times the square of the speed) in all its manifestations.

6. Conclusion

Seventeenth-century scholars tackled the problem of presenting and justi-
fying new knowledge about nature in different ways. Some, like Mersenne,
Mariotte, and Boyle, attributed a key foundational role to experiment.
Despite considerable differences in their approaches, they all believed
experiment to be crucial in their investigations as well as in their formal
presentation. Others, such as Stevin, Galileo, Torricelli, and Huygens, saw
experiment as inherently problematic in this role and sought to find secure
foundations elsewhere. I have no doubt that all of them, especially Galileo
and Huygens, were remarkable and creative experimentalists. However,
they shared a common concern for establishing knowledge about nature in
an axiomatic fashion, on the example of mathematics and in a tradition
going back to Archimedes. The key idea seems to be that some proposi-
tions can appear natural to the mind, yet they entail a number of less nat-
ural-looking consequences. These consequences can help to establish a
science or portions of it, or at least they can rule out a number of com-
peting alternatives, as in the case of unit invariance for falling bodies. Thus,
premises to which the mind naturally consents, often arranged in a con-
trived fashion, can have surprising empirical implications. 

Some axioms look quite convincing, such as the principle of symmetry
for the case of the balance with equal arms and equal weights and for equal
bodies colliding with equal and opposite speeds, but they do not allow one
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ILLUSTRATION 5: Newton’s pendulum experiments.  
Two pendulums CA and DB collide and rebound. By carefully subtracting the
effects of air resistance (if RV is the effect of air resistance in a full to and fro oscil-
lation, one quarter of it is ST or st), Newton showed that action equals reaction for
all bodies, whether hard or soft.
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to go very far. Torricelli’s principle provides some flexibility in the formu-
lation of a science of motion. Other principles, such as that later named by
Newton as the principle of inertia, became increasingly more acceptable in
the second half of the seventeenth century as a result of a conceptual reori-
entation rather than specific contrived experiments. In this specific case the
acceptance of the principle has a historical dimension that becomes espe-
cially significant in the course of the seventeenth century. The case of the
unit invariance for falling bodies is peculiar in some respects, since it was
not formulated as an axiom, but rather as a criterion to rule out compet-
ing rules for falling bodies. It does share with other principles the feature
of being a requirement of reason limiting the ranges of possible behavior
of falling bodies.

The tradition of formulating principles or axioms we expect nature to
observe shows us mathematicians in action seeking propositions about
nature not, or not only, through experimental activities, but by thinking
about a reasonable course nature is expected to follow and by imposing
conditions and restrictions on the form of the mathematical relations
describing nature’s course. This tradition is significant in the formal pre-
sentation of a science and is an important component, alongside the much-
more frequently celebrated experimental method, in the history of science
and philosophy in the seventeenth century.

The contents of my essay resonate with some of the themes of this vol-
ume, such as the importance of a priori or non-empirical principles in sci-
ence, and the temporal and historical dimension of those principles. Of
course, I am not advocating a teleological reading of Kantian themes into
the past leading all the way from Archimedes, through Galileo, to the first
Critique and Carnap. Rather, my aim is to provide historians and philoso-
phers of science with material for reflection on the role and significance of
a multifarious non-empirical tradition in the history of science. With regard
to Kant, I believe it would especially significant to explore what role
Leibniz’s works, such as “Brevis demonstratio erroris memorabilis Cartesii
et aliorum,” played in the assimilation and development of the themes
explored in this essay. 

NOTES

1. I wish to thank all those who offered comments on previous versions of this
essay at the University of South Carolina, Columbia, and the University of
California, San Diego. Mike Mahoney was kind enough to offer helpful observa-
tions on an earlier draft of this essay. A special thanks to the editors for their
thoughtful and constructive comments and to Jordi Cat for a fruitful conversation. 

38 Domenico Bertoloni Meli

Domski 7  6/22/10  12:03 PM  Page 38



2. Dear (1995); Daston (1991); Newman (2004), ch. 5.
3. Another example is Euclid’s Optica (Euclid, 1985). See Lindberg (1976),

12–13. As Tal Golan pointed out, Euclid’s Elements too can be seen as a mathe-
matical science dealing with nature, notably physical space.

4. Mahoney (1998), 707–8 and (1985), 4–5 of the online version. Those
maxims, however, were not generally accepted. Guidobaldo dal Monte, for exam-
ple, did not accept no. 3; see Drake and Drabkin (1969), 300, 316, 318.

5. My views do not differ from Mahoney’s on this point. 
6. Steinle (2008). Funkenstein (1986), ch. 3.
7. Schaffer and Shapin (1985). Shapin (1994). Dear (1995). Some topics rel-

evant to my discussion were introduced in Holton (1973, 1988).
8. Dijksterhuis (1987), 373–77;. Duhem (1991), 247–49.
9. Dijksterhuis (1987), 286–87. I have slightly altered the translation.
10. For a brief survey see Dijksterhuis (1987), 290–98.
11. Stevin (1955), 179 and 401. Stevin was familiar with Archimedes’s works

in the edition of Federico Commandino.
12. Galileo (1890–1909), 4: 77–78 and 8: 156–57.
13. Galileo (1890–1909), 8:152–54.
14. On the leaning tower experiment, for example, see Camerota (2004),

61–62.
15. Camerota (2004), 91, 138. Galileo (1890–1909), 2:180; 10: 115–16,

Galileo to Sarpi, Venice, 16 October 1604; 10: 248–49, Valerio to Galileo, Rome,
18 July 1609. Wisan (1978), especially 5, 44.

16. Galileo (1974), 162. Galileo’s alleged claim at 169 that: “sensory experi-
ences . . . are the foundations of all resulting structure” is a serious mistranslation
by Drake.

17. Galileo (1974), 162.
18. Galileo (1974), 164.
19. Galileo (1974), 171–75.
20. For Mersenne’s changing attitudes to Galileo see Dear (1988).
21. Galileo (1890–1910), 13: 348–49, Castelli to Baliani, 20 November 1627.
22. Bertoloni Meli (2004), 182.
23. Descartes (1983), 59–69.
24. Huygens (1888–1950), 16: 30. Here and in later quotations I rely on the

translation by Michael Mahoney at http://www.princeton.edu/~hos/mike/
texts/huygens/impact/huyimpct.html 

25. Huygens (1888–1950), 16: 32.
26. Huygens (1888–1950), 16: 30. Michael Mahoney drew my attention to

Huygens’s drawing of a barge on a canal, 16: 122.
27. Huygens (1888–1950), 16: 56. Duhem (1991), 261–64 and 349–56.
28. Mariotte (1673). 
29. But see Gabbey (1980), 272–97.
30. Westfall (1971) devoted a whole book to the history of the second law in

the seventeenth century. Newton (1999), 416–17.
31. Huygens (1888–1950), 16: 48–49 and 180. Huygens’s essay in the

Journal is reproduced in 16: 179–81. It is worth noticing that Huygens did not
make an axiom of the conservation of the sum of the products of the bodies’ 
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magnitudes times the square of their speeds (for hard bodies), but rather he took
it to be a result of his investigations in proposition XI. Huygens (1888–1950), 16:
73 and 180, where the same proposition appears as rule 6.

32. In the Principia Newton generally relied on a combination of high-power
mathematics and empirical data, whether from experiments or astronomical obser-
vations. See Smith (2002). For optics see Shapiro (1993), 1–40.

33. Newton (1999), 417, 420–21; quotation from 427.
34. Newton (1999), 427–29. Friedman (2001), 39 n.46. 
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